Теплообменниками называются аппараты, в которых происходить теплообмен, между рабочими средами не зависимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, концентраторы, пастеризаторы, испарители, деаэраторы, экономайзеры и д.р.) Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых передача тепла является основным процессом, и реакторы, в которых тепловой процесс играет вспомогательную роль.

Классификация теплообменников возможна по различным признакам.

По способу передачи тепла различаются:

  • теплообменники смешения, в которых рабочие среды непосредственно соприкасаются или перемешиваются,
  • поверхностные теплообменники — рекуператоры, в которых тепло передается через поверхность нагрева — твердую (металлическую) стенку, разделяющую эти среды.

По основному назначению различаются:

  • подогреватели;
  • испарители;
  • холодильники;
  • конденсаторы.

В зависимости от вида рабочих сред различаются теплообменники:

  • жидкостно-жидкостные — при теплообмене между двумя жидкими средами;
  • парожидкостные — при теплообмене между паром и жидкостью (паровые подогреватели, конденсаторы);
  • газожидкостные — при теплообмене между газом и жидкостью (холодильники для воздуха) и др.

По тепловому режиму различаются:

  • теплообменники периодического действия, в которых наблюдается нестационарный тепловой процесс;
  • непрерывного действия с установившимся во времени процессом.

В теплообменниках периодического действия тепловой обработке подвергается определенная порция (загрузка) продукта; вследствие изменения свойств продукта и его количества параметры процесса непрерывно варьируют в рабочем объеме аппарата во времени.

теплообменник

При непрерывном процессе параметры его также изменяются, но вдоль проточной части аппарата, оставаясь постоянными во времени в данном сечении потока. Непрерывный процесс характеризуется постоянством теплового режима и расхода рабочих сред, протекающих через теплообменник. В качестве теплоносителя наиболее широко применяются насыщенный или слегка перегретый водяной пар. В смесительных аппаратах пар обычно барботируют в жидкость (впускают под уровень жидкости), при этом конденсат пара смешивается с продуктом, что не всегда допустимо. В поверхностных аппаратах пар конденсируется на поверхности нагрева и конденсат удаляется отдельно от продукта с помощью водоотводчиков.

Водяной пар как теплоноситель обладает множеством преимуществ: легкостью транспортирования по трубам и регулирования температуры, высокой интенсивностью теплоотдачи и др. Применение пара особенно выгодно при использовании принципа многократного испарения, когда выпариваемая из продукт вода направляется в виде греющего пара в другие выпарные аппараты и подогреватели. Обогрев горячей водой и жидкостями также имеет широкое применение и выгоден при вторичном использовании тепла конденсатов и жидкостей (продуктов), которые но ходу технологического процесса нагреваются до высокой температуры.

В сравнении с паром жидкостный подогрев менее интенсивен и отличается переменной, снижающейся температурой теплоносителя. Однако регулирование процесса и транспорт жидкостей так же удобны, как и при паровом обогреве. Общим недостатком парового и водяного обогрева является быстрый рост давления с повышением температуры. В условиях технологической аппаратуры пищевых производств при паровом и водяном обогреве наивысшие температуры ограничены 150-160 С, что соответствует давлению (5-7) 105 Па.

В отдельных случаях (в консервной промышленности) при¬меняется масляный обогрев, который позволяет при атмосфер¬ном давлении достигнуть температур до 200°С. Широко применяется обогрев горячими газами и воздухом (до 300—1000°С) в печах, сушильных установках. Газовый обогрев отличается рядом недостатков: трудностью регулирования и транспортирования теплоносителя, малой интенсивностью теплообмена, загрязнением поверхности аппаратуры (при использовании топочных газов) и др.

Однако в ряде случаев он является единственно возможным (например, в воздушных сушилках). В холодильной технике используется ряд хладагентов: воздух, вода, рассолы, аммиак, углекислота, фреон и др. При любом использовании теплоносителей и хладагентов тепловые и массообменные процессы подчинены основному— технологическому процессу производства, ради которого создаются теплообменные аппараты и установки. Поэтому решение задач оптимизации теплообмена подчинено условиям рационального технологического процесса. Для нагревания и охлаждения жидких сред разработаны теплообменники разнообразных конструкций. Ниже рассматриваются некоторые конструкции теплообменных аппаратов, применяющихся в пищевой промышленности.