Расчет спирального теплообменника
Теплообменные аппараты (теплообменники) применяются для осуществления теплообмена между двумя теплоносителями с целью нагрева или охлаждения одного из них. В зависимости от этого теплообменные аппараты называют подогревателями или холодильниками.
В ряде случаев целевое назначения имеют оба процесса – нагревание холодного теплоносителя и охлаждение горячего. Тогда теплообменные аппараты называют собственно теплообменниками.
Часто в теплообменных аппаратах в процессе теплообмена происходит изменение агрегатного состояния одного из теплоносителей: конденсация горячего или испарение холодного теплоносителя. В этих случаях аппараты называют конденсаторами или кипятильниками.
По способу передачи тепла различают следующие типы теплообменных аппаратов:
— поверхностные, в которых оба теплоносителя разделены стенкой, причем тепло передается через поверхность стенки путем конвекции в теплоносителях и теплопроводности стенки;
— регенеративные, в которых процесс передачи тепла от горячего теплоносителя к холодному разделяется по времени на два периода, и происходит при попеременном нагревании и охлаждении насадки теплообменника. Существенным недостатком регенеративных теплообменников является изменение температуры поверхности насадки во времени, что в некоторых случаях не обеспечивает постоянства конечной температуры нагреваемого или охлаждаемого теплоносителя;
— смесительные, в которых теплообмен происходит при непосредственном соприкосновении теплоносителей. Применение смесительных теплообменников ограничено только теми случаями, когда по технологическим условиям допустимо разбавление нагреваемого или охлаждаемого вещества водой.
Поэтому в химической промышленности наибольшее распространение получили поверхностные теплообменники, которые, в свою очередь, разделяются на трубчатые, пластинчатые, спиральные, с поверхностью, образованной стенками аппарата, с оребренной поверхностью теплообмена.
К конструкции теплообменных аппаратов предъявляется ряд требований: они должны отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.
Этим требованиям во многом отвечают спиральные теплообменники, поверхность теплообмена в котором образуется двумя металлическими листами свернутыми в спирали, образующие два спиральных прямоугольных канала, по которым двигаются теплоносители. Внутренне концы спиралей соединены разделительной перегородкой — керном. Для придания спиралям жесткости и фиксирования расстояния между ними служат металлические прокладки. Система каналов закрыта с торцов крышками.
Преимущества спиральных теплообменников:
— компактность;
— возможность пропускания обоих теплоносителей с высокими скоростями, что обеспечивает большой коэффициент теплопередачи;
— малое гидравлическое сопротивление по сравнению с другими типами поверхностных теплообменников.
Недостатками спиральных теплообменников являются: — сложность изготовления и ремонта;
— пригодность для работы под избыточным давлением не более О,6 МПа.
Спиральные теплообменники могут использоваться как для теплообмена между двумя жидкими теплоносителями, так и для теплообмена между конденсирующимся паром и жидкостью.
В качестве греющего агента в теплообменниках часто используется насыщенный водяной пар имеющий целый ряд достоинств:
— высокий коэффициент теплоотдачи; — большое количество тепла, выделяемое при конденсации пара;
— равномерность обогрева, так как. конденсация пара происходит при постоянной температуре;
— легкое регулирование обогрева.
При охлаждении в кожухотрубных теплообменниках в качестве хла¬доагента может использоваться речная или артезианская вода, а в случае, ко¬гда требуется получить температуру ниже 5 °С применяют холодильные рассолы (водные растворы CaCL2, NaCl, и др.).
Что необходимо расчитать:
Спиральный теплообменник для охлаждения 8 т/ч бензола от температуры кипения до 25 ?С водой с начальной температурой 15 и конечной 60 ?С