А теперь рассмотрим на рисунке 2 внешние и внутренние энергетические связи ГЭС.

Рисунок 2 – Принципиальная схема основных внешних и внутренних энергетических связей гидроэлектростанции.

 Vвод– поступление воды в водохранилище ГЭС;  Vисп.в.– испарение воды из водохранилища;   Фвод– поток воды к гидротурбине;  Фв– сброс низкопотенциальной воды в русло реки;  Vв– поток воды в нижнем бьефе;  Фэ– отпуск электроэнергии потребителю

Рисунок 2 – Принципиальная схема основных внешних и внутренних энергетических связей гидроэлектростанции.

Из рисунка 2 должно следовать, что поскольку высоконапорный поток воды поступает на турбину без затрат энергии — естественным путем, то стоимость электроэнергии ГЭС, при близких значения 1 кВт установленной мощности к ТЭС, должна быть намного меньше, чем от угольной электростанции. Однако это не всегда так.

Весной через створы существующих ГЭС проходит в среднем 60 % годового стока воды. При этом от 10 до 25 % годового стока воды ГЭС сбрасывается вхолостую из-за отсутствия регулирующей емкости водохранилища. Это, в первую очередь касается низконапорных плотин и турбин на реках Среднерусской равнины, в результате чего в течение года все гидротурбины на ГЭС работают при номинально мощности только весной. А в остальное время года часть их работает на неполную мощность или простаивает. Поэтому ГЭС не могут обеспечивать электроснабжение потребителя по потребности (номинальную выработку летом, осенью и особенно зимой).

При площади водохранилища Новосибирской ГЭС 1072 км2, годовая выработка электроэнергии составляет 1,678 млрд кВт∙ч. Или с 1 м2 всего 1,56 кВт∙ч в год, при среднегодовом КИУМ около 40 %. А Саяно-Шушенская ГЭС при площади водохранилища 621 км2 вырабатывала в год около 23,5 млрд кВт∙ч электроэнергии. Или с 1 м2 38 кВт∙ч в год, при среднегодовом КИУМ около 42 %. Конечно в немалой степени такие низкие КИУМ связаны с потерей огромных объемов воды от её испарения.

На стоимость вырабатываемой электроэнергии ГЭС также влияет не высокая энергетическая плотность потока рабочего тела — воды.

Приведенные выше примеры генерации электроэнергии, показывают, что в период окупаемости проектов, на её стоимость в первую очередь влияет КИУМ, который зависит главным образом от запаса первичной энергии (угля, воды), от их энергетических потенциалов, возможности её (первичной энергии) равномерного по времени поступления для преобразования в электроэнергию.

В решении задач обеспечения малых потребителей бесперебойным электроснабжением часто используются схемные решения, с аккумулированием выработанной ВЭС, ФЭС или бензиновым электрогенератором электроэнергии.

На рисунке 3 представлены внешние и внутренние энергетические связи ВЭС.

Рисунок 3 – Принципиальная схема основных внешних и внутренних энергетических связей ветроэлектрической станции.

 Vвет– поступление потока воздуха на турбину;  Мс– передача крутящего момента на электрогенератор;  Фэ.а– поток электроэнергии для зарядки аккумулятора;  Фэ– отпуск электроэнергии потребителю

Рисунок 3 – Принципиальная схема основных внешних и внутренних энергетических связей ветроэлектрической станции.

Примерно также будут выглядеть, с учетом присущих им различий технологических переделов, схема основных внешних и внутренних энергетических связей ФЭС и схема с бензиновым электрогенератором и аккумуляторами.

Из рисунка 3 видно, что отпуск потребителю электроэнергии может осуществляться бесперебойно и при отсутствии ветра до полной разрядки аккумуляторов.